Abstract
Abstract
Photoswitchable self-assembled monolayers (SAMs) in contact with a conductive or semiconductive layer can be used to remotely trigger changes in electrical current using light. In this study, we apply full-atomistic simulations to assess the changes in electronic structure and charge-transport properties of a graphene sheet in contact with an amorphous silica dielectric decorated by an azobenzene SAM. The simulations explicitly account for the structural and electrostatic disorder sourced by the dielectric, which turns out to be weakly affected by photoisomerization and spatially correlated over a length scale of 4–5 nm. Most interestingly, by combining large-scale (tight binding) density functional theory with Kubo–Greenwood quantum transport calculations, we predict that the trans-cis isomerization should induce a shift in surface electrostatic potential by a few tenths of a volt, accompanied by a variation in conductivity by a factor of about 3.
Funder
Fonds De La Recherche Scientifique - FNRS
H2020 Marie Sklodowska-Curie Actions
Région Wallone
Horizon 2020 Framework Programme
M-ERA.NET MODIGLIANI
Agence Nationale de la Recherche
Fédération Wallonie-Bruxelles
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献