Physical properties of bulk, defective, 2D and 0D metal halide perovskite semiconductors from a symmetry perspective

Author:

Quarti ClaudioORCID,Katan Claudine,Even Jacky

Abstract

Abstract Metal halide perovskite-based nanostructures, nanosheets and nanoparticles at the forefront, show attractive optoelectronic properties, suitable for photovoltaics and light emission applications. Achieving a sounded understanding of these basic electronic and optical properties represents therefore a crucial step for the full technological exploitation of this class of semiconductors. The rapidly expanding chemical engineering and their unusual structural diversity is fascinating but also challenging for a rational description on par with those well-known for conventional semiconductors. In this sense, group theory-based symmetry analyses offer a general and rigorous approach to understand the properties of various bulk perovskites and perovskite-based nanostructures. In this work, we review the electronic and optical response of metal halide perovskite semiconductors using symmetry analysis from group theory, recalling the main results for the prototypical cubic Pm-3m lattice of AMX3 bulk perovskites (where A is cation, M metal and X halide), then extending the analysis to three cases of technological interest: AMX3 nanoparticles, A4MX6 isolated octahedra, A2MX4 layered systems, and recently introduced deficient halide perovskites (d-HP). On the basis of symmetry arguments, we will stress analogies and differences in the electronic and optical properties of these materials, as induced by the spatial confinement and dimensionality. Meanwhile, we will take advantage of this analysis to discuss recent results and debates from the literature, as the energetics of dark/bright states in the band-edge exciton fine structure of perovskite nanoparticles and nanosheets. From the present work, we also anticipate that the band-edge exciton fine structure of d-HP does not present optically dark states, in striking contrast to AMX3 nanoparticles and layered perovskites, a fact that can have important consequences on the photophysics of these novel perovskitoids.

Funder

Agence Nationale de la Recherche

Horizon 2020 Framework Programme

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3