The case for digital twins in metal additive manufacturing

Author:

Gunasegaram D RORCID,Murphy A BORCID,Matthews M J,DebRoy T

Abstract

Abstract The digital twin (DT) is a relatively new concept that is finding increased acceptance in industry. A DT is generally considered as comprising a physical entity, its virtual replica, and two-way digital data communications in-between. Its primary purpose is to leverage the process intelligence captured within digital models—or usually their faster-solving surrogates—towards generating increased value from the physical entities. The surrogate models are created using machine learning based on data obtained from the field, experiments and digital models, which may be physics-based or statistics-based. Anomaly detection and correction, and diagnostic closed-loop process control are examples of how a process DT can be deployed. In the manufacturing industry, its use can achieve improvements in product quality and process productivity. Metal additive manufacturing (AM) stands to gain tremendously from the use of DTs. This is because the AM process is inherently chaotic, resulting in poor repeatability. However, a DT acting in a supervisory role can inject certainty into the process by actively keeping it within bounds through real-time control commands. Closed-loop feedforward control is achieved by observing the process through sensors that monitor critical parameters and, if there are any deviations from their respective optimal ranges, suitable corrective actions are triggered. The type of corrective action (e.g. a change in laser power or a modification to the scanning speed) and its magnitude are determined by interrogating the surrogate models. Because of their artificial intelligence (AI)-endowed predictive capabilities, which allow them to foresee a future state of the physical twin (e.g. the AM process), DTs proactively take context-sensitive preventative steps, whereas traditional closed-loop feedback control is usually reactive. Apart from assisting a build process in real-time, a DT can help with planning the build of a part by pinpointing the optimum processing window relevant to the desired outcome. Again, the surrogate models are consulted to obtain the required information. In this article, we explain how the application of DTs to the metal AM process can significantly widen its application space by making the process more repeatable (through quality assurance) and cheaper (by getting builds right the first time).

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3