Flat cutoff probe for real-time electron density measurement in industrial plasma processing

Author:

Yeom H J,Kim J H,Choi D H,Choi E S,Yoon M Y,Seong D J,You Shin JaeORCID,Lee Hyo-ChangORCID

Abstract

Abstract The microwave cutoff probe (CP) is an accurate diagnostic technique to measure absolute electron density even in processing gas plasmas. Because this technique needs the installation of two probe tips and a probe body in the plasma chamber, it may cause plasma perturbation in semiconductor plasma processing; this may increase the uncertainty of the measured value. In this work, a flat CP, which is embedded in the substrate chuck or chamber wall, is proposed to measure electron density without plasma perturbation and to monitor processing plasma in real-time. We first evaluated the performance of various types of flat CPs, such as the point CP, ring CP, and bar cutoff probe (BCP), through electromagnetic (EM) field simulation. The BCP showed better performance with clearer cut-off signal characteristics and minimization of noise signals compared with the other probe types. Therefore, we focused on the characteristics of the BCP through experiments and/or EM simulations and concluded the followings: (i) the measured electron densities of the BCP agree well with those of the conventional CP; (ii) the BCP measures the plasma density near the plasma-sheath boundary layer, which is very closely adjacent to the chamber wall or wafer; (iii) it was demonstrated for the first time that the plasma density can be measured, even though the processing wafers such as un-doped silicon, P type silicon, amorphous carbon, or amorphous carbon/SiO2 patterned wafers were placed on the flat CP; and (iv) we performed real-time measurements of the electron density using the BCP covered with the wafers in plasmas with various process gases, such as Ar, NF3, and O2. These results indicate that the chuck-embed-type or wall-type flat CP can be used as a real-time electron density measurement (monitoring) tool during industrial plasma processing, such as during etching, deposition, sputtering or implantation, and the chuck-embed-type flat CP can measure the plasma density impinging on the wafer in real-time without stopping the processing.

Funder

Korea Research Institute of Standard and Science

R&D Convergence Program

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3