A hybrid computational framework for the simulation of atmospheric pressure plasma jets: the importance of the gas flow model

Author:

Passaras DimitriosORCID,Amanatides EleftheriosORCID,Kokkoris GeorgeORCID

Abstract

Abstract A hybrid computational framework, consisting of a detailed turbulence flow model, a global model, and a model for the calculation of the electron energy probability function, is developed to predict the density of plasma generated species along the axial direction of plasma jets. The framework is applied to an Ar/O2 plasma in a kINPen 09 device without a shielding gas. A reaction set of 764 reactions and 84 species is considered. The effect of different turbulence flow models, namely the detailed and high cost large eddy simulation (LES) model and the simple and low cost realizable kε model, on the densities of plasma generated species is investigated at different values of absorbed power. The effect is not severe on the density of the majority of the species, justified by the small differences in the inputs of the global model, i.e. the volume averaged axial velocity and density of air species (coming from the turbulence flow model). Nevertheless, the differences in the densities of O2(1Σg), O, O2 , O(1D), O, H, H2(r), H, N2O(v), H7O3 +, H9O4 +, H15O7 + and OH are remarkably affected by the choice of the turbulence flow model and may reach an order of magnitude. The detailed LES model is a proper choice for Ar jets and this is reinforced by the comparison of the results of the framework with atomic oxygen experimental measurements along the axial direction of the jet: the use of the LES model leads to atomic oxygen density closer to the measured one compared to (the use of) the realizable kε model. Finally, an evaluation of the assumptions required for the use of global models in plasma jets is performed, demonstrating their validity for the case studied.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3