Abstract
Abstract
A spatially two dimensional fluid-MC hybrid (fluid-kinetic) simulation method is developed and applied to the COST reference microplasma jet operated in helium with an oxygen admixture of 0.5%, excited by a single frequency voltage waveform with f = 13.56 MHz and
ϕ
rms
=
275
V. The simulation approach is based on a fluid model augmented by a Monte Carlo module that generates electron impact rates for the continuity equations solved by the fluid module. This method is capable of providing the same level of accuracy as PIC/MCC simulations with an agreement within 5%–10% at atmospheric pressure, while being significantly faster (with a speedup factor of 30 for serial to 50 for parallel implementation). The simulation results are compared to previous measurements of atomic oxygen densities (Steuer et al 2021 J. Phys. D: Appl. Phys.
54 355204), and show a very good agreement. It is found that the buildup and saturation of the atomic oxygen density distribution along the jet are due to the interplay of chemical and electron impact reactions as well as of the gas flow. Comparing the simulation results to that of Liu et al 2021 J. Phys. D: Appl. Phys.
54 275204, it is inferred that fluid models where a 2-term BE solver is used, fail to describe the COST jet in an accurate manner due to the underestimation of the electron impact rates.
Funder
Deutsche Forschungsgemeinschaft
National Research, Development and Innovation Office
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献