Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating

Author:

Osca Engelbrecht MORCID,Ridgers C P,Dedrick JORCID,Boswell R

Abstract

Abstract High frequency (HF) capacitively coupled plasmas (CCPs) are ubiquitous, having several industrial applications, especially in the semiconductor industry. Inductive heating effects within these plasmas play an important role and therefore understanding them is key to improve industrial applications. For this purpose kinetic research, using particle-in-cell (PIC) codes, offers significant opportunity to study, and improve, industrial plasma processes that operate at the atomic level. However, PIC codes commonly used for CCPs are electrostatic and thus cannot be used to simulate electromagnetically induced currents. Therefore we have developed EPOCH-LTP, a 1D PIC code with a current heating model, that enables the simulation of inductive heating effects in HF CCPs. First simulation results, from an HF CCP (60 MHz) operated at 1 mTorr of argon, show that inductive currents couple most of their power to the electrons at the interface between the bulk plasma and the sheath. Furthermore, the simulation of a dual-frequency CCP, where a HF inductive current and a low-frequency (LF) voltage waveform at 400 kHz are applied, have shown a synergy between the HF and LF waveforms that increase the inductive heating rate.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3