Formation and consumption of HO2 radicals in ns pulse O2–He plasmas over a liquid water surface

Author:

Telfah HamzehORCID,Jans Elijah,Raskar SaiORCID,Adamovich Igor VORCID

Abstract

Abstract Hydroperoxyl (HO2) radicals are an important precursor in the formation of hydrogen peroxide (H2O2), a key species in plasma-liquid interactions, such that their formation and consumption pathways need to be understood. In this work, the generation and decay of HO2 have been studied in a controlled environment, in ns pulse discharge O2–He plasmas in contact with a liquid water surface. For this, time-resolved, absolute number densities of HO2 in O2–He mixtures excited by a repetitive ns pulse discharge are measured in situ by cavity ring down spectroscopy (CRDS). The discharge cell with external electrodes to generate the plasma and a water reservoir are integrated into the CRDS cavity. The high-reflectivity cavity mirrors are purged with helium to protect them from water vapor condensation. The experimental results are obtained at near room temperature, both during the discharge pulse burst and in the afterglow. The HO2 number density is inferred from the CRDS data using a spectral model exhibiting good agreement with previous measurements of absolute HO2 absorption cross sections. HO2 is generated during the discharge burst and decays in the afterglow between the bursts. The HO2 number density is also measured vs. the O2 fraction in the mixture. Comparison with the kinetic modeling predictions demonstrates good agreement with the data and identifies the dominant HO2 generation and decay processes. HO2 in the plasma is formed predominantly by the recombination of H atoms, generated by the electron impact dissociation of water vapor, with O2 molecules. Reactions with O atoms and hydroxyl (OH) radicals are among the main HO2 decay processes in the afterglow. HO2 is also detected when O2 is not present in the mixture. In this case, it is generated primarily by the recombination of OH radicals, via the formation of H2O2. The results demonstrate that CRDS can also be used for HO2 and other plasma chemical reaction product measurements in atmospheric pressure plasma jets impinging on a liquid water surface in ambient air.

Funder

US Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3