Plasma‐enhanced evaporation and its impact on plasma properties and gaseous chemistry in a pin‐to‐water pulsed discharge

Author:

Yang Qi1,Qiao Jun‐Jie1,Cheng He2,Wang Da‐Zhi1,Zhang Qing‐Yuan1,Wang Xue‐Ying1,Xiong Qing1ORCID

Affiliation:

1. State Key Laboratory of Power Transmission Equipment and System Security and New Technology Chongqing University Chongqing People's Republic of China

2. School of Chemistry and Chemical Engineering Nanjing University of Science and Technology Nanjing Jiangsu People's Republic of China

Abstract

AbstractThe plasma in contact with liquids has led to various novel applications such as plasma biomedicine, material synthesis, and so on. However, the phenomenon of evaporation under plasma treatment and its impact on plasma–liquid interactions has a limited understanding. In this study, the spatially and temporally resolved behavior of water vapor production and its induced influences on plasma properties and gaseous chemistry were studied in detail in an atmospheric pressure pin‐to‐water pulsed He discharge. Diagnostic methods such as laser‐induced fluorescence (LIF) and high‐resolution optical emission spectroscopy (OES) were applied to determine the water vapor and OH radical densities, as well as key plasma parameters such as the gas temperature and electron density. It shows that the physicochemical properties of plasma vary among different discharge regions due to evaporation behavior stimulated during the pulsed discharge‐on phase. In addition, using simulation based on the experimental data, the mechanisms of how water vapor affects the observed spatiotemporal behaviors of OH radicals in different discharge regions are understood. Compared to the pin‐anode and liquid‐cathode sheath regions, proper electron parameters such as density and temperature, as well as water vapor density in the plasma‐positive column, significantly enhance the production of reactive OH radical through the dominant path of electron‐stimulated H2O dissociation. However, higher levels of electron parameters in the intense discharge region near the positive‐pin boundary enhance OH dissociation and finally result in the hollow distribution of OH density. From the global kinetic plasma simulation, the production of reactive hydroxide species playing key roles in plasma medicine treatments, such as O, H, HO2, H2O2, and hydrated ions including H+(H2O)4 and H+(H2O)5, are promoted noticeably as a result of the enhanced water evaporation process.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Polymers and Plastics,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3