Abstract
Abstract
The floating probe method (FPM) applicable for processing plasma diagnostics was developed for the measurement of ion density and electron temperature (J. Appl. Phys. 101 033305). When an AC voltage is applied to a floating probe, harmonic currents are generated due to the nonlinearity of the sheath. The electron temperature and ion density are obtained using the harmonic currents and the voltage across the sheath. However, in the FPM, when the sensing resistance becomes similar to the sheath resistance, iterative calculations must be performed to compensate for the voltage reduction across the sheath due to the sensing resistor. In this paper, the voltage across a DC blocking capacitor is measured to directly obtain the voltage across the sheath. Therefore, it is not necessary to compensate for the voltage reduction across the sheath through iterative calculations. The electron temperature was increasingly overestimated as the capacity of the DC blocking capacitor became smaller. This overestimation was caused by the capacitive load effect and was compensated for using a correction for the second harmonic current. The measured electron temperature and ion density were compared with those from electron energy distribution functions (EEDFs) in an inductively coupled plasma, and they were in good agreement.
Funder
Ministry of Trade, Industry and Energy
National Research Foundation of Korea
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献