Fully kinetic model of plasma expansion in a magnetic nozzle

Author:

Andrews ShaunORCID,Di Fede SimoneORCID,Magarotto MirkoORCID

Abstract

Abstract A self-consistent model is presented for performing steady-state fully kinetic particle-in-cell simulations of magnetised plasma plumes. An energy-based electron reflection prevents the numerical pump instability associated with a typical open-outflow boundary, and is shown to be sufficiently general that both the plume kinetics and plasma potential demonstrate domain independence (within 6%). This is upheld by non-stationary Robin-type boundary conditions on the Poisson’s equation, coupled to a capacitive circuit that allows physical evolution of the downstream potential drop in the transient. The method has been validated against experiments, providing results that fall within the uncertainty of measurements. Simulations are then carried out to study collisional xenon discharges into axisymmetric diverging magnetic nozzles (MNs). Particular discussion is given to the identification of a collision-enhanced potential well arising from charge separation at the plume periphery, the role of ion–neutral charge exchange, and a three-region piecewise polytropic cooling regime for electrons. The polytropic index is shown to depend on the degree of magnetisation. Specifically, in the region near the thruster outlet, the plume is weakly-magnetised due to the cross-field diffusion of electron-heavy particle collisions. Downstream, a strongly-magnetised region of near-isothermal expansion occurs. Finally, in the detached region, the polytropic index tends to that of a more adiabatic unmagnetised case. With an increasing MN field strength, an inferior limit is found to the average polytropic index of γ ¯ e 1.16 .

Funder

Horizons 2020 PATH

Technology for Propulsion and Innovation (T4i) S.p.A.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Reference62 articles.

1. Electric propulsion for small satellites

2. Helicon-type radiofrequency plasma thrusters and magnetic plasma nozzles

3. The helicon double layer thruster;Boswell,2003

4. Development of Electrodeless Plasma Thrusters With High-Density Helicon Plasma Sources

5. Design and development of a 1 kw-class helicon antenna thruster;Merino,2015

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3