A fully kinetic study on the plasma detachment processes in the collisionless propulsive magnetic nozzle

Author:

Chen ZhiyuanORCID,Wu Kunlong,Wang YibaiORCID,Ren Junxue,Wu Peng,Zhang GuangchuanORCID,Li Min,Tang HaibinORCID

Abstract

Abstract A fully kinetic axisymmetric particle-in-cell model is employed to simulate and study the detachment processes of electrons in the propulsive magnetic nozzle. The detachment ratio is adopted to evaluate the extent to which the electrons detach from the magnetic field. The theoretical expression for the electron detachment ratio is derived and indicates that the electron detachment is driven by two mechanisms: inertia effect and gyro-viscous effect. The simulation results show that the detachment direction of electrons are outward in the upstream and inward in the downstream. In addition, the dominating detachment mechanisms in the upstream is inertia effect, while the gyro-viscous effect is equally, if not more, important as the inertia effect in the downstream, especially around the periphery of the magnetic nozzle under lower magnetic field strength. Moreover, the electron detachment is found to contribute to no more than 20% of the axial flux of plasma in the downstream, while the majority of it is caused by the electrons flowing along the magnetic field.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3