Tomographic optical emission spectroscopy of an atmospheric pressure plasma jet and surface ionization waves on planar and structured surfaces

Author:

Bentz Brian ZORCID

Abstract

Abstract In this paper, an approach for 3D plasma structure diagnostics using tomographic optical emission spectroscopy (Tomo-OES) of a nanosecond pulsed atmospheric pressure plasma jet (APPJ) is presented. In contrast to the well-known Abel inversion, Tomo-OES does not require cylindrical symmetry to recover 3D distributions of plasma light emission. Instead, many 2D angular projections are measured with intensified cameras and the multiplicative algebraic reconstruction technique is used to recover the 3D distribution of light emission. This approach solves the line-of-sight integration problem inherent to optical diagnostics, allowing recovery of localized OES information within the plasma that can be used to better infer plasma parameters within complex plasma structures. Here, Tomo-OES was applied to investigate an APPJ operated with helium in ambient air and impinging on planar and structured dielectric surfaces. Surface charging caused the guided streamer from the APPJ to transition to a surface ionization wave (SIW) that propagated along the surface. The SIW experienced variable geometrical and electrical material properties as it propagated, leading to 3D configurations that were non-symmetric and spatially complex. Light emission from He, N 2 + , and N2 were imaged at ten angular projections and the respective time-resolved 3D emission distributions in the plasma were then reconstructed. The spatial resolution of each tomographic reconstruction was 7.4 µm and the temporal resolution was 5 ns, sufficient to observe the guided streamer and the effects of the structured surface on the SIW. Emission from He showed the core of the jet and emission from N 2 + and N2 indicated effects of entrainment of ambient air. Penning ionization of N2 created a ring or outer layer of N 2 + that spatially converged to form the ‘plasma bullet’ or spatially diverged across a surface as part of a SIW. The SIW entered trenches of size 150 µm, leading to decreases in plasma light emission in regions above the trenches. The plasma light emission was higher in some regions with trenches, possibly due to effects of field enhancement.

Funder

Sandia National Laboratories

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3