Hyperspectral imaging of a microwave argon plasma jet expanding in ambient air

Author:

Khazem Fatima1ORCID,Durocher-Jean Antoine1ORCID,Hamdan Ahmad1ORCID,Stafford Luc1ORCID

Affiliation:

1. Département de Physique, Université de Montréal , Montréal, Québec H3C 3J7, Canada

Abstract

Non-equilibrium plasmas at atmospheric pressure are often characterized by optical emission spectroscopy. Despite the simplicity of recording optical emission spectra in plasmas, the determination of spatially resolved plasma properties (e.g., electron temperature) in an efficient way is very challenging. In this study, spatially resolved optical images of a microwave argon plasma jet expanding into the ambient air are recorded over a wide range of wavelengths using a hyperspectral imaging system based on a tunable Bragg-grating imager coupled to a scientific complementary metal–oxide–semiconductor camera. The system’s working principle is detailed, along with the necessary post-processing steps. Further analysis of the spatial–spectral data, including the Abel transform used to determine 2D radially resolved spatial mappings, is also presented. Overall, the proposed approach provides unprecedented cartographies of key plasma parameters, such as argon and oxygen line emission intensities, Ar metastable number densities, and argon excitation temperatures. Considering that all these plasma parameters are obtained from measurements performed in a reasonable time, Bragg-grating-based hyperspectral imaging constitutes an advantageous plasma diagnostic technique for detailed analysis of microwave plasma jets used in several applications.

Funder

Natural Sciences and Engineering Research Council of Canada

Fondation Courtois

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3