The formation of atomic oxygen and hydrogen in atmospheric pressure plasmas containing humidity: picosecond two-photon absorption laser induced fluorescence and numerical simulations

Author:

Schröter SandraORCID,Bredin Jérôme,Gibson Andrew RORCID,West AndrewORCID,Dedrick James PORCID,Wagenaars ErikORCID,Niemi KariORCID,Gans TimoORCID,O’Connell DeborahORCID

Abstract

Abstract Atmospheric pressure plasmas are effective sources for reactive species, making them applicable for industrial and biomedical applications. We quantify ground-state densities of key species, atomic oxygen (O) and hydrogen (H), produced from admixtures of water vapour (up to 0.5%) to the helium feed gas in a radio-frequency-driven plasma at atmospheric pressure. Absolute density measurements, using two-photon absorption laser induced fluorescence, require accurate effective excited state lifetimes. For atmospheric pressure plasmas, picosecond resolution is needed due to the rapid collisional de-excitation of excited states. These absolute O and H density measurements, at the nozzle of the plasma jet, are used to benchmark a plug-flow, 0D chemical kinetics model, for varying humidity content, to further investigate the main formation pathways of O and H. It is found that impurities can play a crucial role for the production of O at small molecular admixtures. Hence, for controllable reactive species production, purposely admixed molecules to the feed gas is recommended, as opposed to relying on ambient molecules. The controlled humidity content was also identified as an effective tailoring mechanism for the O/H ratio.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3