2D Particle-in-cell simulations of charged particle dynamics in geometrically asymmetric low pressure capacitive RF plasmas

Author:

Wang LiORCID,Hartmann PeterORCID,Donkó ZoltánORCID,Song Yuan-HongORCID,Schulze JulianORCID

Abstract

Abstract Understanding the spatio-temporal dynamics of charged particles in low pressure radio frequency capacitively coupled plasmas (CCP) is the basis for knowledge based process development in these plasma sources. Due to the importance of kinetic non-local effects the particle in cell/Monte Carlo collision (PIC/MCC) simulation became the primary modeling approach. However, due to computational limitations most previous PIC/MCC simulations were restricted to spatial resolution in one dimension. Additionally, most previous studies were based on oversimplified treatments of plasma-surface interactions. Overcoming these problems could clearly lead to a more realistic description of the physics of these plasma sources. In this work, the effects of the reactor geometry in combination with realistic heavy particle and electron induced secondary electron emission coefficients (SEEC) on the charged particle dynamics are revealed by GPU based 2D3V PIC/MCC simulations of argon discharges operated at 0.5 Pa and at a high voltage amplitude of 1000 V. The geometrical reactor asymmetry as well as the SEECs are found to affect the power absorption dynamics and distribution functions of electrons and ions strongly by determining the sheath voltages and widths adjacent to powered and grounded surface elements as well as via the self-excitation of the plasma series resonance. It is noticed that secondary electrons play important roles even at low pressures. Electron induced secondary electrons (δ-electrons) are found to cause up to half of the total ionization, while heavy particle induced secondary electrons (γ-electrons) do not cause much ionization directly, but induce most of the δ-electron emission from boundary surfaces. The fundamental insights obtained into the 2D-space resolved charged particle dynamics are used to understand the formation of energy distribution functions of electrons and ions for different reactor geometries and surface conditions.

Funder

National Natural Science Foundation of China

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3