Modular constructed metal-grid arrays—an alternative to silicon-based microplasma devices for catalytic applications

Author:

Dzikowski SebastianORCID,Michaud RonanORCID,Böttner Henrik,Dussart RemiORCID,Böke MarcORCID,Schulz-von der Gathen VolkerORCID

Abstract

Abstract Here, we present a modular constructed metal-grid micro cavity plasma array as a flexible, robust, and simple alternative to micro-structured devices based on silicon. They show great potential for applications requiring large-area treatment, catalytic conversion or decomposition of volatile organic compounds. The metal-grid array is an easily assembled layered structure consisting of a metal grid, a dielectric foil and a magnet. The grid contains between hundreds and thousands of uniformly arranged cavities with a diameter of 150 μm. The whole system is kept together by magnetic force. This also allows disassembling and exchange of the components independently. Typically, the arrays are operated close to atmospheric pressure with an alternating voltage of up to 1.4 kV peak-to-peak in the kHz range. For a first comparison with silicon-based configurations, the metal-grid array is examined from two different perspectives using phase-resolved imaging. The individual cavities show the same asymmetric discharge behaviour as in the silicon-based arrays. In addition, the expansion width of the discharge from the cavities could be measured. The same interaction between the cavities with the propagation of an ionization wave with velocities in the km/s range is observed as for the silicon-based devices. Thus, with respect to the most basic discharge properties, both configurations show the same behaviour, although they are different in structure and composition.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatially and temporally resolved atomic oxygen densities in a micro cavity plasma array;Plasma Sources Science and Technology;2023-02-01

2. State enhanced actinometry in the COST microplasma jet;Plasma Sources Science and Technology;2022-09-30

3. Electric field strengths within a micro cavity plasma array measured by Stark shift and splitting of a helium line pair;Plasma Sources Science and Technology;2022-06-01

4. Spatially and Temporally Resolved Atomic Oxygen Densities in a Micro Cavity Plasma Array;2022 IEEE International Conference on Plasma Science (ICOPS);2022-05-22

5. Intra-cavity dynamics in a microplasma channel by side-on imaging;Plasma Sources Science and Technology;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3