Spatially and temporally resolved atomic oxygen densities in a micro cavity plasma array

Author:

Steuer DavidORCID,van Impel HenrikORCID,Schulz-von der Gathen VolkerORCID,Böke MarcORCID,Golda JudithORCID

Abstract

Abstract Micro cavity plasma arrays have numerous applications, such as the treatment of volatile organic compounds or the generation of new species. In recent years, the focus has also shifted to plasma catalysis, in which catalytic surfaces are combined with plasmas. The key to all of these applications is the generation of reactive species such as atomic oxygen within the plasma. Typically, atomic oxygen densities can be measured by laser spectroscopic methods. In the case of a micro plasma array, which consists of thousands of cavities with a diameter between 50 and 200 µm, optical access is limited. For this reason, an optical emission spectroscopy approach, helium state enhanced actinometry, is used. 2D resolved narrow bandwidth measurements are performed by using an ICCD camera in combination with a tunable bandpass filter (550–1000 nm). The discharge is operated in helium with an oxygen admixture of 0.1%. An argon admixture of 0.05% is used as actinometer gas. The triangular excitation voltage is varied between amplitudes of 400 and 800 V at a frequency of 15 kHz. Very high dissociation degrees up to nearly complete dissociation are observed. Time resolved measurements show significant differences in oxygen density between the increasing and the decreasing potential phase.

Funder

DFG

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3