Development and validation of an iodine plasma model for gridded ion thrusters

Author:

Lafleur TORCID,Habl L,Rossi E Zorzoli,Rafalskyi DORCID

Abstract

Abstract Iodine is emerging as an attractive alternative propellant to xenon for several electric propulsion technologies due to its significantly lower cost and its ability to be stored unpressurized as a solid. Because of the more complex reaction processes and energy-loss channels in iodine plasmas however, as well as the historical lack of reliable collision cross-section data, the development of accurate theoretical and numerical models has been hindered. Using recently calculated theoretical cross-sections, we present an iodine plasma model and perform a comparison with experimental data obtained from an iodine-fuelled gridded ion thruster. The model is in reasonable agreement with experimental measurements of the ion beam current, propellant mass utilization efficiency, and ion beam composition, and is able to quantitatively and qualitatively reproduce system behaviour as the input mass flow rate and RF power are varied. In addition, both the model and experiment show that the use of iodine can lead to a performance enhancement when compared with xenon. This occurs because of the combination of different iodine reaction processes, collision cross-section values, and inelastic energy thresholds which result in lower collisional energy losses, as well as an increased antenna-plasma power transfer efficiency for thrusters using a radio-frequency inductive coil.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Reference49 articles.

1. Technology of electron-bombardment ion thrusters;Kaufman,1975

2. Molecular propellants for ion thrusters

3. Xenon acquisition strategies for high-power electric propulsion NASA missions;Herman,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3