Foundations of magnetized radio-frequency discharges

Author:

Tsankov Tsanko VORCID,Chabert PascalORCID,Czarnetzki UweORCID

Abstract

Abstract This is the second part of a set of two papers on radio-frequency (RF) discharges, part of a larger series on the foundations of plasma and discharge physics. In the first paper (Chabert et al 2021 Plasma Sources Sci. Technol. 30 024001) the two basic configurations of RF discharges commonly used in industrial applications, the capacitive and the inductive discharges, are presented. The introduction of an external magnetic field to these discharges results in not only a quantitative enhancement of their capabilities but also leads to qualitatively different interaction mechanisms between the RF field and the plasma. This provides rich opportunities for sustaining dense plasmas with high degrees of ionization. On one hand, the magnetic field influences significantly the particle and energy transport, thus providing new possibilities for control and adjustment of the plasma parameters and opening even lower operation pressure windows. On the other hand, when the magnetic field is introduced also in the region where the plasma interacts with the RF field, qualitatively new phenomena arise, that fundamentally change the mechanisms of power coupling to the plasma—the electromagnetic energy can be transported as waves deeper into the plasma volume and/or collisionlessly absorbed there by wave resonances. The characteristics of these discharges are then substantially different from the ones of the standard non-magnetized RF discharges. This paper introduces the physical phenomena needed for understanding these plasmas, as well as presents the discharge configurations most commonly used in applications and research. Firstly, the transport of particles and energy as well as the theory of waves in magnetized plasmas are briefly presented together with some applications for diagnostic purposes. Based on that the leading principles of RF heating in a magnetic field are introduced. The operation and the applications of various discharges using these principles (RF magnetron, helicon, electron cyclotron resonance and neutral loop discharges) are presented. The influence of a static magnetic field on standard capacitive and inductive discharges is also briefly presented and discussed.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3