Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications

Author:

Kim June YoungORCID,Kaganovich Igor DORCID,Hyo-Chang LeeORCID

Abstract

Abstract Ionization gas sensors are a ubiquitous tool that can monitor desired gases or detect abnormalities in real time to protect the environment of living organisms or to maintain clean and/or safe environment in industries. The sensors’ working principle is based on the fingerprinting of the breakdown voltage of one or more target gases using nanostructured materials. Fundamentally, nanomaterial-based ionization-gas sensors operate within a large framework of gas breakdown physics; signifying that an overall understanding of the gas breakdown mechanism is a crucial factor in the technological development of ionization gas sensors. Moreover, many studies have revealed that physical properties of nanomaterials play decisive roles in the gas breakdown physics and the performance of plasma-based gas sensors. Based on this insight, this review provides a comprehensive description of the foundation of both the gas breakdown physics and the nanomaterial-based ionization-gas-sensor technology, as well as introduces research trends on nanomaterial-based ionization gas sensors. The gas breakdown is reviewed, including the classical Townsend discharge theory and modified Paschen curves; and nanomaterial-based-electrodes proposed to improve the performance of ionization gas sensors are introduced. The secondary electron emission at the electrode surface is the key plasma–surface process that affects the performance of ionization gas sensors. Finally, we present our perspectives on possible future directions.

Funder

Korea Research Institute of Standard and Science

National Research Council of Science & Technology

Material Innovation program

ICT & Future Planning

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3