The detachment-induced mode in electronegative capacitively coupled radio-frequency plasmas

Author:

Tian Chong-BiaoORCID,Wang LiORCID,Vass MátéORCID,Wang Xiao-KunORCID,Dong WanORCID,Song Yuan-HongORCID,Wang You-Nian,Schulze JulianORCID

Abstract

Abstract Insights into the spatio-temporally resolved electron power absorption dynamics in capacitively coupled radio-frequency plasmas are essential for understanding the fundamentals of their operation and as a basis for knowledge-based plasma process development. Similar to the γ-mode, an ionization maximum is observed at the sheath edge around the time of maximum sheath voltage in electronegative oxygen discharges at a pressure of 300 Pa. Based on Particle-in-Cell/Monte Carlo Collisions (PIC/MCC) simulations, we demonstrate that this maximum is not only caused by secondary electrons emitted at the electrode and collisionally multiplied inside the sheath. In fact, it also occurs in the complete absence of secondary electrons in the simulation, and is caused by the generation of O ions by electron attachment close to the electrode during the local sheath collapse. These negative ions are accelerated towards the plasma bulk by the sheath electric field during sheath expansion. By electron detachment from these negative ions, electrons are generated inside the sheath and are accelerated towards the plasma bulk by the instantaneous sheath electric field—similarly to secondary electrons. Ionization is also observed in the plasma bulk and caused by electrons generated by detachment and accelerated by the high drift-and ambipolar electric fields. This detachment-induced electron power absorption is found to have significant effects on the discharge in the presence and absence of secondary electron emission. Its fundamentals are understood based on an analysis of the spatio-temporal electron and O power absorption dynamics as well as the trajectory of selected O ions close to the electrode.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3