Adjustment of high-energy ion flux in BP-HiPIMS via pulsed coil magnetic field: plasma dynamics and film deposition

Author:

Luo Yang,Han MingyueORCID,Su Yukun,Li Hua,Li Duoduo,Tang Ling,Deng Dachen,Gu JiabinORCID,Yan Xin,Xu Ye,Luo Sida,Li LiuheORCID

Abstract

Abstract As an emerging and extraordinary plasma source, bipolar pulsed high power impulse magnetron sputtering (BP-HiPIMS) discharge has been widely concerned by academia and industry due to the ability to control the deposited ion energy. In the present work, with the intension of increasing the high-energy ion fraction and flux during deposition, the BP-HiPIMS is operated together with a solenoidal coil installed in front of the target. This intension is achieved by applying a pulsed coil current so that the ions generated during the high-power negative pulse can be manipulated to diffuse towards substrate and then arrive at the substrate surface during the positive pulse. Systematic investigations of discharge characteristics and plasma parameters for Ti target discharge in Ar gas have been made, illustrating that applying a pulsed coil current prior to the positive pulse onset for ∼50 μs is an optimal selection to obtain a larger fraction of high-energy ions. The complex plasma dynamics has also been explored using the particle-in-cell/Monte Carlo collision approach. To verify the statements realized by plasma measurements, the Ti films have been deposited on a floating Si substrate, whose microstructure and surface morphology are characterized by field emission scanning electron microscope and atomic force microscope. The deposition illustrates that applying a pulsed coil current prior to the positive pulse onset for ∼50 μs can prepare a thicker, denser, and smoother Ti film. The link between the plasma parameters and film microstructure is studied using the molecular dynamics simulations which show that the high-energy ions contribute to optimizing the adatom diffusion and mobility on growing film surface, which is more beneficial to get a smaller grain size and decrease the film surface roughness.

Funder

National Science and Technology Major Project

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3