Study on the characteristics of helium plasma jet by pulsed micro-hollow cathode discharge

Author:

Duan Zhengchao,Li Peizhen,He FengORCID,Han RuoyuORCID,Ouyang Jiting

Abstract

Abstract In this paper, the helium plasma jet generated by micro-hollow cathode discharge (MHCD) was studied. The MHCD was driven by a square-wave pulsed power source, and the characteristics of discharge and plasma jet were measured experimentally. The influences of the gas flow rate on the MHCD and the plasma jet were investigated. And the propagation mechanisms of the plasma jet were analyzed. The results show that within 100–1000 sccm of the gas flow rate, the breakdown delay time of the MHCD increases with the helium flow increasing. It is considered that the gas flow affects the density of seed electrons and thus the breakdown delay time. With the helium flow rate increasing, the whole plasma jet length increases firstly and then decreases. A detailed investigation shows that during one discharge pulse, two distinguishable propagation processes of the plasma jet are observed. It is found that the jet of the first stage is formed during the rising edge of the current pulse, while the other is generated after the discharge current becomes stable. The propagation velocity of jet in the first stage is on the order of several km s−1, which is similar to that of the discharge evolution obtained by simulation. And the propagation speed of the jet in the second stage is on the order of several hundred m s−1, which is close to the velocity of gas flow. The spatial–temporal distributions of light emission show that high-energy electrons can only be observed during the jet propagation in the first stage, and low-energy electrons can be detected in both the first and second stages. The results show that the electric field plays an important role on the jet propagation in the first stage, and the jet propagation during the second stage is mainly promoted by the thermal gas expansion.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3