Expansion of surface barrier discharge scrutinized

Author:

Lindner MORCID,Pipa A VORCID,Brandenburg RORCID,Schreiner R

Abstract

Abstract Developing the fundamentals for the electrical diagnostics of surface dielectric barrier discharges (SDBDs) is of enormous importance for several applications, for example flow control and gas cleaning. The main challenge is to account for the discharge expansion along the dielectric surface. Typically, a linear expansion with the amplitude of the applied voltage is observed. In this work, we report on a step-wise SDBD expansion along the Al2O3 dielectric surface. More specific, the discharge occupied a certain area after ignition, which remained constant until the voltage exceeded the critical amplitude V L . This absence of expansion is seen as a linear dependence of the discharge power on the applied voltage and it was additionally confirmed by photographs with long exposure times. This novel phenomenon is more pronounced for thicker dielectrics. It is suggested that the derivative of the charge–voltage characteristics can be used for the determination of all essential parameters of the simplest equivalent circuit of SDBDs. Moreover, it was shown that the derivative of the charge–voltage characteristics for the positive half-cycle of the discharge agrees numerically with the voltage dependence of the reactor capacitance derived from photographs. This agreement between both measurement methods indicate a similar step-wise expansion of the SDBD even if a voltage amplitude above V L is applied

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3