Affiliation:
1. Department of Nuclear Engineering North Carolina State University Raleigh North Carolina USA
2. Department of Mechanical and Aerospace Engineering Rutgers University Piscataway New Jersey USA
3. Department of Food Bioprocessing and Nutrition Sciences North Carolina State University Raleigh North Carolina USA
Abstract
AbstractSurface dielectric barrier discharges (SDBDs) have been gaining interest in part due to their scalability and flexibility of materials used, allowing larger electrodes with more complex geometries. This paper seeks to elucidate the properties of SDBD geometries utilizing differing repeated lattice structures. Voltage and current traces, optical emission spectroscopy, digital imaging, and numerical analysis are used to analyze the electrodes. Temporally and spatially averaged reduced electric fields and the total power deposited into the plasma are presented. The averaged reduced electric field is not significantly affected by increasing applied voltage, but minor variations could be observed due to the geometry of the electrode lattice structures. Finally, plasma power does not track linearly with perimeter in these more complicated lattice structures.
Subject
Polymers and Plastics,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献