Voltage waveform tailoring in radio frequency plasmas for surface charge neutralization inside etch trenches

Author:

Krüger FlorianORCID,Wilczek SebastianORCID,Mussenbrock ThomasORCID,Schulze JulianORCID

Abstract

Abstract The etching of sub micrometer high-aspect-ratio (HAR) features into dielectric materials in low pressure radio frequency technological plasmas is limited by the accumulation of positive surface charges inside etch trenches. These are, at least partially, caused by highly energetic positive ions that are accelerated by the sheath electric field to high velocities perpendicular to the wafer. In contrast to these anisotropic ions, thermal electrons typically reach the electrode only during the sheath collapse and cannot penetrate deeply into HAR features to compensate the positive surface charges. This problem causes significant reductions of the etch rate and leads to deformations of the features due to ion deflection, i.e. the aspect ratio is limited. Here, we demonstrate that voltage waveform tailoring can be used to generate electric field reversals adjacent to the wafer during sheath collapse to accelerate electrons towards the electrode to allow them to penetrate deeply into HAR etch features to compensate positive surface charges and to overcome this process limitation. Based on 1D3V particle-in-cell/Monte Carlo collision simulations of a capacitively coupled plasma operated in argon at 1 Pa, we study the effects of changing the shape, peak-to-peak voltage, and harmonics’ frequencies of the driving voltage waveform on this electric field reversal as well as on the electron velocity and angular distribution function at the wafer. We find that the angle of incidence of electrons relative to the surface normal at the wafer can be strongly reduced and the electron velocity perpendicular to the wafer can be significantly increased by choosing the driving voltage waveform in a way that ensures a fast and short sheath collapse. This is caused by the requirement of flux compensation of electrons and ions at the electrode on time average in the presence of a short and steep sheath collapse.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3