First-principles simulation of optical emission spectra for low-pressure argon plasmas and its experimental validation

Author:

Jenina Arellano FatimaORCID,Gyulai Márton,Donkó ZoltánORCID,Hartmann PeterORCID,Tsankov Tsanko VORCID,Czarnetzki UweORCID,Hamaguchi SatoshiORCID

Abstract

Abstract Various spectral line emissions are often used for the experimental characterization of low-temperature plasmas. For a better understanding of the relation between the plasma characteristics and optical emission spectra, first-principle numerical simulations for low-pressure radio-frequency driven capacitively-coupled plasmas (CCPs) of argon have been performed by coupling one-dimensional particle-in-cell/Monte Carlo collision (PIC/MCC) simulations with a global collisional-radiative model (CRM). The only ionization and excitation mechanisms included in the PIC/MCC simulations of this study are the electron-impact ionization and excitations of the ground-state Ar atoms, as done commonly, whereas the electron-impact ionization of metastable states and other ionization mechanisms are also included in the CRM to account for the optical emission spectra. The PIC/MCC coupled CRM provides the emission spectra, which are then compared with experimental data obtained from the corresponding Ar CCPs with a gas pressure ranging from 2 Pa to 100 Pa. The comparison has shown good agreement for pressures up to about 20 Pa but increasingly notable deviations at higher pressures. The deviation is ascribed to the missing consistency between the PIC/MCC simulations and CRM at higher pressures, where the ionization from the metastable states is more dominant than that from the ground states, indicating a significant change in the electron energy distribution function due to the electron collisions with excited Ar atoms at higher pressures.

Funder

Japan Society of the Promotion of Science

Casio Science Promotion Foundation

Hungarian Office for Research, Development and Innovation

Japan Ministry of Education, Culture, Sports, Science and Technology

Osaka University International Joint Research Promotion Programs

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3