Improved glucose oxidation catalytic current generation by an FAD-dependent glucose dehydrogenase-modified hydrogel electrode, in accordance with the Hofmeister effect

Author:

Yoshida Aimi,Tsujimura SeiyaORCID

Abstract

Abstract Herein, we describe the effect of varying anions in an electrolyte solution on current generation by a redox hydrogel electrode. The electrode surface is coated with a thin film of hydrogel matrix, consisting of an osmium (Os) redox polymer including tethered Os complexes, polymer backbone, and a redox enzyme. In this case, the enzymes employed are flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH), which catalyzes glucose oxidation, and the result was compared with that reported earlier for glucose oxidase (GOx). The hydrogel matrix facilitates efficient electron transfer from glucose to the electrode via collision of the Os complexes and thus acts as a mediator. The degree of impact of anions on current generation is characteristic of the Hofmeister series. Chaotropic anions, such as nitrate and chloride, increase and decrease the catalytic current produced by FAD-GDH and GOx hydrogel electrodes, respectively. Such anions can adsorb onto the cationic region of the FAD-GDH surface and induce a negative charge, which enhances electrostatic interactions between the enzyme and the positively charged Os polymer. Kosmotropic anions, such as sulphate and phosphate increase the catalytic current due to hydrogel shrinkage, which increases the relative concentrations of both enzyme and mediator within the hydrogel architecture due to an increase in density. High-performance electrode design depends on understanding the impact of ion identity on catalytic current responses of redox hydrogel electrodes.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent progress in mitochondrial biofuel cells;Journal of Electroanalytical Chemistry;2023-12

2. Development of Materials for Advanced Electrochemical Biodevices;Review of Polarography;2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3