Advanced manufacturing applied to nuclear fusion—challenges and solutions

Author:

Jones SteveORCID

Abstract

Abstract Materials needed to achieve designed performance will require formulations and processing methods capable of delivering a compendium of metallic, ceramic and cermet chemistries, which must be finely tuned at source, and tolerant to down-stream thermomechanical adjustment. Structural steels and cermets are continuously being developed by researchers using computational thermodynamics modelling and modified thermomechanical treatments, with oxide dispersion strengthened steel (ODS)-reduced activated ferritic-martensitic steel (RAFM) steels based on 8%–16% wt.% Cr now being assessed. The combination of SiCf and CuCrZr as a metal matrix composite containing an active coolant would be seen as a major opportunity, furthermore, composite ceramic materials consisting of SiC fibres reinforcing a SiC matrix capable of being joined to metallic structures offer great potential in the development of advanced heat exchangers. Continuing the theme of advanced manufacturing, the use of solid-state processing technologies involving powder metallurgy–hot isostatic pressing and spark plasma sintering to produce near-net shaped products in metallics, ceramics and cermets are critical manufacturing research themes. Additive manufacturing (AM) to produce metallic and ceramic components is now becoming a feasible manufacturing route, and through the combination of AM and subtractive machining, capability exists to produce efficient fluid carrying structures that could not be manufactured by any other process. Extending this to using electron beam welding and advanced heat treatments to improve homogeneity and provide modularity, a two-pronged solution is now available to improve capability and integrity, whilst concurrently offering increased degrees of freedom for designers.

Funder

NAMRC and High Value Manufacturing Catapult

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3