Spatial control of the conductivity in SrTiO3-based heterointerfaces using inkjet printing

Author:

Hvid-Olsen TORCID,Gadea C,Holde F B,Hoffmann K M,Jespersen T S,Grove-Rasmussen KORCID,Trier FORCID,Christensen D VORCID

Abstract

Abstract Interfaces between complex oxides host a plethora of functional properties including enhanced ionic conductivity, gate-tunable superconductivity and exotic magnetic states. The enhanced electronic, ionic and magnetic properties along the oxide interfaces are generally exploited in functional devices by spatial confinement of ions and electrons. Different patterning methods have been used to spatially control the conductivity at the interface, but a key limitation is the multiple steps needed to fabricate functional devices. In this investigation, inkjet printing of thermally stable oxides is introduced as an alternative pathway for spatially controlling the interface conductivity. We inkjet print yttrium-stabilized zirconia and TiO2 with various shapes and use these as physical masks to confine the electronic conductivity in SrTiO3-based heterostructures. By performing in-situ transport measurements of the electrical conductivity as LaAlO3 and γ-Al2O3 are deposited on SrTiO3, we witness the birth of the interface conductivity and find a consistent transient behavior as conductivity emerges in patterned and non-patterned heterostructures. We find that conductivity appears after the first laser pulse in the pulsed laser deposition corresponding to the film covering only a few percent of the substrate. We attribute the emergence of conductivity to oxygen vacancies formed by a combination of plasma bombardment and oxygen transfer across the interface during growth. In this vein, inkjet patterned hard masks protects the SrTiO3 substrate, effectively confining the conductivity. The study paves a scalable way for realizing energy devices with spatially controlled electronic and ionic interface conductivity.

Funder

Novo Nordisk Fonden

Villum Fonden

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3