Extreme magnetoresistance at high-mobility oxide heterointerfaces with dynamic defect tunability

Author:

Christensen D. V.ORCID,Steegemans T. S.,D. Pomar T.ORCID,Chen Y. Z.ORCID,Smith A.ORCID,Strocov V. N.ORCID,Kalisky B.ORCID,Pryds N.ORCID

Abstract

AbstractMagnetic field-induced changes in the electrical resistance of materials reveal insights into the fundamental properties governing their electronic and magnetic behavior. Various classes of magnetoresistance have been realized, including giant, colossal, and extraordinary magnetoresistance, each with distinct physical origins. In recent years, extreme magnetoresistance (XMR) has been observed in topological and non-topological materials displaying a non-saturating magnetoresistance reaching 103−108% in magnetic fields up to 60 T. XMR is often intimately linked to a gapless band structure with steep bands and charge compensation. Here, we show that a linear XMR of 80,000% at 15 T and 2 K emerges at the high-mobility interface between the large band-gap oxides γ-Al2O3 and SrTiO3. Despite the chemically and electronically very dissimilar environment, the temperature/field phase diagrams of γ-Al2O3/SrTiO3 bear a striking resemblance to XMR semimetals. By comparing magnetotransport, microscopic current imaging, and momentum-resolved band structures, we conclude that the XMR in γ-Al2O3/SrTiO3 is not strongly linked to the band structure, but arises from weak disorder enforcing a squeezed guiding center motion of electrons. We also present a dynamic XMR self-enhancement through an autonomous redistribution of quasi-mobile oxygen vacancies. Our findings shed new light on XMR and introduce tunability using dynamic defect engineering.

Publisher

Springer Science and Business Media LLC

Reference68 articles.

1. Telegin, A. & Sukhorukov, Y. Magnetic semiconductors as materials for spintronics. Magnetochemistry 8, 173 (2022).

2. Ramirez, A. P. Colossal magnetoresistance. J. Phys. Condens Matter 9, 8171 (1997).

3. Lou, R. et al. Observation of open-orbit Fermi surface topology in the extremely large magnetoresistance semimetal MoAs2. Phys. Rev. B 96, 241106 (2017).

4. Niu, R. & Zhu, W. K. Materials and possible mechanisms of extremely large magnetoresistance: a review. J. Phys. Condens. Matter 34, 113001 (2022).

5. Abrikosov, A. A. Galvanomagnetic phenomena in metals in the quantum limit. Sov. Phys. JETP 29, 746 (1969).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3