Interface engineering of antimony selenide solar cells: a review on the optimization of energy band alignments

Author:

Wang Yazi,Ji Seunghwan,Shin ByunghaORCID

Abstract

Abstract Earth-abundant and environmentally benign antimony selenide (Sb2Se3) has emerged as a promising light-harvesting absorber for thin-film photovoltaic (PV) devices due to its high absorption coefficient, nearly ideal bandgap for PV applications, excellent long-term stability, and intrinsically benign boundaries if properly aligned on the substrate. The record power conversion efficiency of Sb2Se3 solar cells has currently reached 9.2%, however, it is far lower than the champion efficiencies of other chalcogenide thin-film solar cells such as CdTe (22.1%) and Cu(In,Ga)Se2 (23.35%). The inferior device performance of Sb2Se3 thin-film solar cells mainly results from a large open-circuit voltage deficit, which is strongly related to the interface recombination loss. Accordingly, constructing proper band alignments between Sb2Se3 and neighboring charge extraction layers through interface engineering to reduce carrier recombination losses is one of the key strategies to achieving high-efficiency Sb2Se3 solar cells. In this review, the fundamental properties of Sb2Se3 thin films, and the recent progress made in Sb2Se3 solar cells are outlined, with a special emphasis on the optimization of energy band alignments through the applications of electron-transporting layers and hole-transporting layers. Furthermore, the potential research directions to overcome the bottlenecks of Sb2Se3 thin-film solar cell performance are also presented.

Funder

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3