Cement sensors with acoustic bandgaps using carbon nanotubes

Author:

Vemuganti S,Stormont J C,Pyrak-Nolte L J,Dewers T,Taha M M RedaORCID

Abstract

Abstract Cement is widely used in wellbores to stabilize the steel casing used in wellbore operations for oil and gas production, enhanced geothermal systems and carbon sequestration, and to limit fluid movement between sub-surface strata. Flaws such as microcracks in wellbore cement can lead to leakage along the wellbore compromising wellbore integrity. There is an increasing need for methods to monitor cement crack propagation in wellbore environments. In this study, we develop and report the first cementitious sensors capable of exhibiting high frequency acoustic bandgaps (ABGs) using carbon nanotubes (CNTs). Computational simulations of a sensor unit cell are used to design cement-multi walled carbon nanotubes (MWCNTs) sensors that show a wide bandgap. When the cement-MWCNTs sensors is embedded in cement specimens, bandgaps were measured experimentally under 300 kHz and under 600 kHz, consistent with the computationally predicted bandgaps in the range of 290–360 kHz, 410–460 kHz and 515–585 kHz. These bandgap features were absent in homogeneous cement specimens. X-ray tomographic reconstructions showed microscopic debonding at cement-MWCNTs sensor interface. Frequency response analysis of a three-dimensional computational model indicated a shift of frequency of minimum transmission due to the interface debonding, but no perturbation of bandgap response was observed. The cement-MWCNTs sensors developed in this study show the potential of a packed CNT inclusion material in cementitious matrix to create ABGs in a cement matrix.

Funder

United State Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Technology Development, Geothermal Technology Office

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference47 articles.

1. Improve the economics of oil and gas wells by reducing the risk of cement failure;Ravi,2002

2. Thermal considerations of cement integrity in geothermal wells;Wu

3. Well integrity in drilling and well operations;Norsok,2013

4. Attenuation measurements in cement-based materials using laser ultrasonics;Owino;J. Eng. Mech.,1999

5. Phononic band-gap crystals for radio frequency communications;El-Kady;Appl. Phys. Lett.,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3