Curing process monitoring of polymeric composites with Gramian angular field and transfer learning-boosted convolutional neural networks

Author:

Zhu Jianjian,Su Zhongqing,Wang Qingqing,Yu Yinghong,Wen Jinshan,Han Zhibin

Abstract

Abstract Continuous and accurate monitoring of the degree of curing (DoC) is essential for ensuring the structural integrity of fabricated composites during service. Although machine learning (ML) has shown effectiveness in DoC monitoring, its generalization and extendibility are limited when applied to other curing-related scenarios not included in the previous learning process. To break through this bottleneck, we propose a novel DoC monitoring approach that utilizes transfer learning (TL)-boosted convolutional neural networks alongside Gramian angular field-based imaging processing. The effectiveness of the proposed approach is validated through experiments on metal/polymeric composite co-bonded structures and carbon fiber reinforced polymers using raw sensor data separately collected through the electromechanical impedance and fiber Bragg grating (FBG) measurements. Four indicators, accuracy, precision, recall, and F1-score are introduced to evaluate the performance of generalization and extendibility of the proposed approach. The indicator scores of the proposed approach exceed 0.9900 and outperform other conventional ML algorithms on the FBG dataset of the target domain, demonstrating the effectiveness of the proposed approach in reusing the pre-trained base model on the composite curing monitoring issues.

Funder

Hong Kong Research Grants Council

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3