Screening significant properties of macro-fiber composite laminate substrate anisotropy with viscoelastic and thermal considerations at the quasi-static level

Author:

Tran BrandonORCID,Ifju Peter G

Abstract

Abstract A macro-fiber composite (MFC) is a class of smart material actuator that employs piezoceramic fibers to extend or contract under an applied electric field. When embedded on a thin substrate, actuated MFCs induce surface pressure, resulting in out-of-plane motion. Design characteristics of the substrate, such as anisotropy, give rise to unique bend/twist behavior. Previous studies on MFC applications have focused on optimizing patch location in relation to the local design to achieve optimal bend/twist motion. However, the resolution to these approaches is restricted to the design space of the application, presenting an absence in piezoelectric laminate design intuition. This research aims to streamline the initial optimization process by analyzing the significant material properties associated with substrate design. To accomplish this, a viscoelastic piezoelectric plate theory model is developed to accurately capture the displacement behavior of the MFC laminate for any given substrate design. Experimental data is used to validate and refine the model, ensuring it closely represents real-world physics. A 2k fractional factorial design of experiments approach is used to identify significant substrate properties per MFC laminate configuration, assigning each material property a two-level coding system. Three configurations are observed, with each exhibiting distinct significant properties and effects compared to others. Furthermore, the study explores the impact of thermal factors on substrate behavior for these MFC laminates, highlighting how significant properties can be temperature dependent. The contributions to the kinematic response due to substrate property perturbation varies uniquely per material property and MFC laminate configuration. Statistical evidence supports the notion that the hysteretic behavior of a material is unaffected by thermal influences and is solely determined by the elastic constants of the substrate. The maximum remanent hysteretic response is shown to be proportional to the maximum actuation response at near room temperature.

Funder

Air Force Office of Scientific Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference60 articles.

1. Review of state of art of smart structures and integrated systems;Chopra;AIAA J.,2002

2. Damping of structural vibrations with piezoelectric materials and passive electrical networks;Hagood;J. Sound Vib.,1991

3. A self-sensing piezoelectric actuator for collocated control;Dosch;J. Intell. Mater. Syst. Struct.,1992

4. Macro-fiber composites for sensing, actuation and power generation;Sodano,2003

5. F-16 ventral fin buffet alleviation using piezoelectric actuators;Browning,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3