Multi-physical modeling and fabrication of high-performance IPMC actuators with serrated interface

Author:

Rao Manting,Tang Fei,Li Yan,Chang LongfeiORCID,Zhu ZicaiORCID,Aabloo Alvo

Abstract

Abstract Ionic Polymer–Metal Composite (IPMC) has been widely recognized as a promising and representative candidate of soft intelligent materials actuated under low voltage. In the last few years, the importance of the electrode/substrate interface has received growing attention for research on both the modeling of ion-based mass transport and practical performance of the manipulation of ionic electro-active actuators. In this paper, based on a macroscopic serrated interface morphology, the influences of the interface were revealed comprehensively by distinguishing the bending direction as well as the variation of interfacial area, excisional volume and moment of inertia. The offsetting interaction from different aspects were analyzed in detail. On this basis, an interesting result showed that, contrary to current understanding, an enlarged interface area did not necessarily lead to better deformation, which was primarily ascribed to the trade-off of influences from the increasing excisional volume and decreasing bending inertia moment. In addition, a corresponding fabrication process was established, which verified experimentally that IPMC with a super simple macroscopic serrated interface can present a high electro-active performance, providing a minimalist design strategy for ionic electroactive polymer structures.

Funder

National Natural Science Foundation of China

European Union’s Horizon 2020 research and innovation program

Estonian Research Council

China Scholarship Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3