Reusable energy-absorbers design harnessing snapping-through buckling of tailored multistable architected materials

Author:

Jin Mingzhu,Hou XiuhuiORCID,Zhao Wenhao,Deng ZichenORCID

Abstract

Abstract Multistable metamaterials are artificially engineered materials that possess microarchitectures capable of maintaining multiple stable configurations. However, the realization of mechanical metamaterials with numerous programmable stable configurations using double-curved beam (DCB) elements remains an ongoing challenge. In this study, we exploit the snapping-through buckling phenomenon exhibited by architected DCB structures to devise a mechanical metamaterial with a unique deformation mode, encompassing multi-stability, multi-path, multi-platform, and multi-step characteristics, hence referred to as a 4 M architected material. By employing DCB as fundamental building block elements, architected materials with two-dimensional (2D) series or parallel lattices are successfully constructed, as well as three-dimensional (3D) tubular geometries, denoted as DCB-n-m-C and DCB-n-m-M metamaterials, respectively. These metamaterials exhibit reversible energy absorption characteristics and the stiffness can be transformed from positive to negative under both small and large elastic deformations. Functional gradient design and tailored deformation capability are given by adjusting the wall thickness of each layer of DCBs, thereby demonstrating the multi-path deformation features inherent in 4 M metamaterials. DCB-n-m-M metamaterials has multiple energy platforms in the process of snapping-through, which reflects the multi-platform characteristics of 4 M metamaterial. Consequently, novel properties such as multistability, programmability, and reusable energy absorption characteristics are achieved. To comprehensively understand the mechanical response of the metamaterials, a thorough investigation into the influence of geometric parameters is conducted, including the number of polygonal edges, the number of the layers, and the aspect ratio Q. This investigation involves a combination of theoretical analyses, numerical simulations, and experimental verifications. The introduced design strategy paves a way for the innovative design of multistable, multi-step, tailored, and reversible deformation metamaterials.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Innovation Fund for the doctoral thesis of Northwestern Polytechnical University

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3