Abstract
Origami has been employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. Deployable metamaterials are usually flexible, particularly along their deploying and collapsing directions, which unfortunately in many cases leads to an unstable deployed state, i.e., small perturbations may collapse the structure along the same deployment path. Here we create an origami-inspired mechanical metamaterial with on-demand deployability and selective collapsibility through energy analysis. This metamaterial has autonomous deployability from the collapsed state and can be selectively collapsed along two different paths, embodying low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields load-bearing capability in the deployed direction while possessing great deployability and collapsibility. The principle in this work can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications.
Publisher
Proceedings of the National Academy of Sciences
Cited by
310 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献