Dual-parameter stretchable, transferable mesh piezoresistive sensor for electronic skin detection of strain and temperature changes

Author:

Wang Chunhui,Xin Chaojie,Song Qihang,Wang Shuobang,Cheng Siyi,Shi Chao,Zhao Dongyuan,He Qingyuan,Zhang Jie,Chen XiaomingORCID

Abstract

Abstract Wearable sensors integrating multiple functions have great potential in artificial intelligence and flexible electronics at this stage and can perceive various external stimuli with high sensitivity and accuracy, such as strain, stress, and temperature. However, because multiple parameters do affect each other and reduce the sensing performance, making a single device that can detect multiple functions simultaneously is a huge challenge. In this paper, a strain-temperature dual-parameter sensor is developed with a planar structure design and used poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) and multi-walled carbon nanotubes polymerization materials to prepare a micron-sized film. The influence of two-dimensional structures on sensing performance is explored through simulation, and a structure with large deformation is selected to improve the strain detection range. The sensor can detect static and dynamic strain signals, and can maintain good linearity and response speed below 100 ms within a large strain range of 20%. In addition, the sensor also exhibits good temperature detection capability, with a temperature sensitivity of 18.2 μV K−1 and the ability to detect static and dynamic temperature changes with long-term stability. Finally, the sensor is tested in some actual scenarios, reflecting that the sensor manufactured has the dual-detection ability, showing sensitive strain monitoring and temperature perception decoupled between the dual signals. The sensor is realized with circuit board acquisition and wireless communication, combining multi-channel applications. Our research provides a feasible method for constructing multi-parameter human-computer interaction sensors.

Funder

Key Research and Development Projects of Shaanxi Province

National Natural Science Foundation of China

Instrument Analysis Center of Xi’an Jiaotong University for the SEM and XPS

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3