Decoupled Temperature–Pressure Sensing System for Deep Learning Assisted Human–Machine Interaction

Author:

Chen Zhaoyang1,Liu Shun1,Kang Pengyuan1,Wang Yalong1,Liu Hu1ORCID,Liu Chuntai1,Shen Changyu1

Affiliation:

1. State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou Henan 450002 China

Abstract

AbstractWith the rapid development of intelligent wearable technology, multimodal tactile sensors capable of data acquisition, decoupling of intermixed signals, and information processing have attracted increasing attention. Herein, a decoupled temperature–pressure dual‐mode sensor is developed based on single‐walled carbon nanotubes (SWCNT) and poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) decorated porous melamine foam (MF), integrating with a deep learning algorithm to obtain a multimodal input terminal. Importantly, the synergistic effect of PEDOT:PSS and SWCNT facilitates the sensor with ideal decoupling capability and sensitivity toward both temperature (38.2 µV K−1) and pressure (10.8% kPa−1) based on the thermoelectric and piezoresistive effects, respectively. Besides, the low thermal conductivity and excellent compressibility of MF also endow it with the merits of a low‐temperature detection limit (0.03 K), fast pressure response (120 ms), and long‐term stability. Benefiting from the outstanding sensing characteristics, the assembled sensor array showcases good capacity for identifying spatial distribution of temperature and pressure signals. With the assistance of a deep learning algorithm, it displays high recognition accuracy of 99% and 98% corresponding to “touch” and “press” actions, respectively, and realizes the encrypted transmission of information and accurate identification of random input sequences, providing a promising strategy for the design of high‐accuracy multimodal sensing platform in human–machine interaction.

Funder

National Basic Research Program of China

Higher Education Discipline Innovation Project

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3