Using binary-stiffness beams within mechanical neural-network metamaterials to learn

Author:

Hopkins Jonathan BORCID,Lee Ryan H,Sainaghi Pietro

Abstract

Abstract This work introduces the concept of applying binary-stiffness beams within a lattice to achieve a mechanical neural-network (MNN) metamaterial that learns its behaviors and properties with prolonged exposure to unanticipated ambient loading scenarios. Applying such beams to MNN metamaterials greatly increases their learning speed and simplifies the actuation demands, control circuitry, and optimization algorithms required by previously proposed concepts. A binary-stiffness beam design is proposed that uses principles of constraint manipulation and stiffness cancelation to achieve two switchable and discrete states of stiffness (i.e. binary stiffness) along its axis. The beam achieves a near-zero low-stiffness state and a large difference in stiffness between its high and low-stiffness states, which are both shown to be desirable attributes for learning mechanical behaviors. Simulations are conducted to characterize the effect of lattice size, the difference in stiffness between the constituent beam’s high and low-stiffness states, the magnitude of its low-stiffness state, and the number of simultaneously learned behaviors on MNN learning using binary-stiffness beams. Thus, this work provides a necessary step toward enabling practical artificial intelligent metamaterials.

Funder

Air Force Office of Scientific Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3