Reconfigurable perovskite nickelate electronics for artificial intelligence

Author:

Zhang Hai-Tian1ORCID,Park Tae Joon1ORCID,Islam A. N. M. Nafiul2ORCID,Tran Dat S. J.3,Manna Sukriti45ORCID,Wang Qi1ORCID,Mondal Sandip1ORCID,Yu Haoming1,Banik Suvo45ORCID,Cheng Shaobo6ORCID,Zhou Hua7ORCID,Gamage Sampath8ORCID,Mahapatra Sayantan9ORCID,Zhu Yimei6ORCID,Abate Yohannes8ORCID,Jiang Nan9ORCID,Sankaranarayanan Subramanian K. R. S.45ORCID,Sengupta Abhronil2,Teuscher Christof10ORCID,Ramanathan Shriram1ORCID

Affiliation:

1. School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA.

2. Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA.

3. Department of Electrical and Computer Engineering, Santa Clara University, Santa Clara, CA 95053, USA.

4. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA.

5. Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.

6. Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973, USA.

7. X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.

8. Department of Physics and Astronomy, University of Georgia, Athens, GA 30602, USA.

9. Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.

10. Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97201, USA.

Abstract

Reconfigurable devices offer the ability to program electronic circuits on demand. In this work, we demonstrated on-demand creation of artificial neurons, synapses, and memory capacitors in post-fabricated perovskite NdNiO3devices that can be simply reconfigured for a specific purpose by single-shot electric pulses. The sensitivity of electronic properties of perovskite nickelates to the local distribution of hydrogen ions enabled these results. With experimental data from our memory capacitors, simulation results of a reservoir computing framework showed excellent performance for tasks such as digit recognition and classification of electrocardiogram heartbeat activity. Using our reconfigurable artificial neurons and synapses, simulated dynamic networks outperformed static networks for incremental learning scenarios. The ability to fashion the building blocks of brain-inspired computers on demand opens up new directions in adaptive networks.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference58 articles.

1. Overcoming catastrophic forgetting in neural networks

2. Continual lifelong learning with neural networks: A review

3. G. I. Parisi X. Ji S. Wermter On the role of neurogenesis in overcoming catastrophic forgetting from NIPS’18 Workshop on Continual Learning Monteral Canada 7 December 2018.

4. Designing neural networks through neuroevolution

5. Emerging Memory Devices for Neuromorphic Computing

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3