Inkjet printing P(VDF-TrFE-CTFE) actuators for large bending strains

Author:

Sekar S AORCID,Hunt AORCID

Abstract

Abstract Additive manufacturing of sensors and actuators together with structural materials and electronics will make it possible to fabricate innovative system designs that are overly laborious to realise with conventional methods. While printing of the structural materials and electronics are advancing fast, the additive manufacturing methods for actuators and sensors are in an earlier stage of development. This research will develop a manufacturing process for entirely inkjet printed electroactive polymer (EAP) actuators basing on the P(VDF-TrFE-CTFE) relaxor ferroelectric polymer and Ag electrodes. The process consists of (1) printing an Ag layer on a polyethylene terephthalate (PET) substrate for the bottom electrode; (2) formulating, printing and annealing a P(VDF-TrFE-CTFE) ink for the EAP layer; and (3) printing and sintering an Ag layer on the plasma-treated EAP surface to form the top electrode. Two actuator variations, addressed as DMC and KM512, are manufactured and characterised by their: (a) response to quasi-static excitation (1 Hz sine wave); (b) hysteresis behaviour; (c) actuation amplitude variation with the input voltage; and (d) frequency response. The 18 mm long actuators showed 91.4 µm (DMC, 200  V p p ) and 224 µm (KM512, 275  V p p ) deflections in response to 1 Hz sinusoidal excitation, and 1.10 mm (DMC, 113 Hz, 200  V p p ) and 1.72 mm (KM512, 114 Hz, 200  V p p ) deflections in resonant operation. It is 55% more quasi-static strain and 470% more resonant strain than in earlier fully inkjet-printed polyvinylidene fluoride (PVDF) -based actuators, and comparable to similar partially inkjet-printed actuators. This is the first time that inkjet printing of all three layers of a relaxor ferroelectric actuator have been achieved.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3