Abstract
Abstract
Soft bistable actuators that exhibit flexibility, fast response, and low energy consumption are key components for applications such as fast grippers, shape reconfiguration actuators, and deployable soft robots. Inspired by the structure of rhododendron leaves, we designed a bistable dielectric elastomer actuator (BDEA) by integrating a dielectric elastomer with a low-melting-point alloy. The developed BDEA can operate reversibly between two stable states through the synergistic application and control of high voltage and Joule heating. The transition process between the two stable states of the actuator was elucidated using finite element analysis. The bending angles of the actuator in the two deformation directions were measured, and grasping experiments were performed. The experimental results show that the direction and magnitude of deformation of the bistable actuator can be tuned to conform to the shape of the target object. The developed BDEA has enhanced shape adaptability and higher bearing capacity compared to conventional soft actuators.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献