Graphene enhanced flexible piezoelectric transducers for dynamic strain measurement: from material preparation to application

Author:

He JingjingORCID,Fang Ziwei,Gao Chenjun,Zhang Wenxi,Guan Xuefei,Lin Jing

Abstract

Abstract In this study, graphene particles are introduced to the lead magnesium niobate-lead titanate and polyvinylidene fluoride (PVDF) to form a flexible ternary composite. The graphene concentration is rigorously designed and morphologically optimized, warranting good piezoelectric and dielectric properties. The piezoelectric and dielectric performances are greatly increased compared with the pure PVDF films. Then a theoretical model is formulated to quantitatively interpret the graphene effect on the permittivity performance and to provide guidelines for the optimization of graphene volume fraction. Moreover, a simple and cost-effective technique is designed to package the composite film as a large-area, lightweight and flexible transducer. Several confirmatory experiments and a proof-of-concept test are performed based on the proposed flexible piezoelectric transducer to validate the capability of the dynamic strain sensing. By comparing with the results from conventional strain gauges and ceramic piezoelectric wafers, it is verified that the proposed flexible transducer has proven responsivity and precision in responding to quasi-static strain, medium-frequency vibration, and ultrasound. The great potential of the developed transducer for a wide range of applications including structural health monitoring and human motion detection has been demonstrated.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3