Untethered, high-speed soft jumpers enabled by combustion for motions through multiphase environments

Author:

Wang Haipeng,Yang Yang,Lin Guanzheng,Jiao PengchengORCID,He Zhiguo

Abstract

Abstract Soft robots have been widely studied to accomplish multifunctional on-land tasks in recent years. Here, we develop a type of combustion-enabled soft jumpers that are able to move through multiphase media (e.g. water–air multiphase) with a high-speed of ∼6 times body length per second on average and up to ∼9 times body length per second at most while the driving time is less than 0.5 s. The reported soft jumpers are driven by extremely expandable silicon-rubber membranes resulted in the combustion of oxygen-propane mixed gas. Experiments are conducted to investigate the multiphase jumping response of the soft jumpers with respect to the premixed gas ratio r of the combustion. Both numerical and analytical models are developed to investigate the jumping response in terms of the gas amount A , the premixed gas ratio r and the water depth D W , and satisfactory agreements are obtained from the comparisons among the experimental, numerical and analytical results.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Reference34 articles.

1. Soft robot review;Lee;Int. J. Control Autom. Syst.,2017

2. Multigait soft robot;Shepherd;Proc. Natl Acad. Sci. USA,2011

3. Using explosions to power a soft robot;Shepherd;Angew. Chem. Int. Ed.,2012

4. A hybrid combing hard and soft robots;Stokes;Soft Robot.,2014

5. A resilient, untethered soft robot;Tolley;Soft Robot.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3