Abstract
Abstract
Previous work has shown that dielectrophoretic body forces resulting from permittivity and conductivity heterogeneities only partially contribute to the overall electromechanical deformation of segmented polyurethanes (PUs). In this work, we studied the experimental kinetics and electric current of PU thin films over a long time period (1–105 s) for different applied electric fields. Then, we thoroughly analyzed the drift behavior of electric carriers and its macroscopic effect using simple modeling and numerical simulation. The main assumption is that the macroscopic deformation results from the accumulation of electric charges near the electrodes, leading to local stretching. Assuming that the mobilities of negative and positive carriers are different, their migration towards the electrodes will have different kinetics. A preliminary simulation attempt using a single set of parameters, supports these assumptions, and leads to a correct bending amplitude and current evolution according to the applied electric field. Furthermore, the resulting compression is consistent with the observed electrostriction.
Funder
International Research Network ELyT Global
IFS Lyon Center Collaborative Research Projects
Japan Society for the Promotion of Science
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献