Development of a novel strategy based on in-process compensation of charge leakage for static force measurement by piezoelectric force sensors

Author:

Chen Fuwen,Lin Huanbin,Li Zhongwei,Ju Bing-Feng,Chen Yuan-LiuORCID

Abstract

Abstract Ordinary piezoelectric force sensors are only capable of measuring dynamic forces but not static forces because of the charge leakage due to the finite resistance of piezoelectric materials and charge amplifiers. This paper presents a new strategy for in-process compensation of charge leakage for force measurement with wide spectrum from static to dynamic realized by piezoelectric force sensors. The compensation is in-process operated based on the concept of dynamic accumulation. In order to improve the measurement accuracy and long-term stability by the compensation, the zero offset generated by normalization, bias current and temperature drift are all theoretically analyzed and experimentally validated. Measurement experiments of four different types of force signals, which contain static, triangular, sinusoidal and random force signals acting on the piezoelectric force sensor, are conducted to validate the proposed strategy. In addition, the effect of different time constant of the piezoelectric sensor under different applied forces on the compensated results is analyzed. Performance tests containing accuracy, resolution, span and bandwidth have been conducted. It is validated that the proposed method has high sensitivity of sub-millinewton, long-term stability and wide spectrum from static signal to dynamic measurement capabilities, which would provide an effective and precise method for micro force measurement and control in ultra-precision machining, semiconductor industry and biomechanics fields.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3