Abstract
The intensity of the clamping force during milling operations is very important, because an excessive clamping force can distort the workpiece, while inadequate clamping causes slippage of the workpiece. Since the overall clamping force can be affected by the cutting forces throughout machining, it is necessary to monitor the change of clamping and the cutting forces during the process. This paper proposes a hybrid system in the form of a vise with built-in strain gauges and in-house-developed piezoelectric sensors for simultaneous measurement of clamping and cutting forces. Lead zirconate titanate (PZT) sensors are fabricated and embedded in a layered jaw to measure the dynamic forces of the machine tool. A cross-shaped groove within the jaw is designed to embed strain gauges, which predominantly measure the static clamping forces. Sensor fusion technology combining the signals of the strain gauges and PZT piezoelectric sensors is used to investigate the interactions between cutting forces and clamping forces. The results show average errors of 11%, 17%, and 6% for milling forces in X, Y, and Z directions, respectively; and 19% error for clamping forces, confirming the capability of the setup to monitor the forces in milling.
Funder
Korea Institute of Machinery and Materials
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献